Abstract
To assess the disruptions of brain white matter (WM) structural network in children with obstructive sleep apnea (OSA) using diffusion kurtosis imaging (DKI). We use DKI tractography to construct individual whole-brain, region-level WM networks in 40 OSA and 28 healthy children. Then, we apply graph theory approaches to analyze whether OSA children would show altered global and regional network topological properties and whether these alterations would significantly correlate with the clinical characteristics of OSA. We found that both OSA and healthy children showed an efficient small-world organization and highly similar hub distributions in WM networks. However, characterized by kurtosis fractional anisotropy (KFA) weighted networks, OSA children exhibited decreased global and local efficiency, increased shortest path length compared with healthy children. For regional topology, OSA children exhibited significant decreased nodal betweenness centrality (BC) in the bilateral medial orbital superior frontal gyrus (ORBsupmed), right orbital part superior frontal gyrus (ORBsup), insula, postcentral gyrus, left middle temporal gyrus (MTG), and increased nodal BC in the superior parietal gyrus, pallidum. Intriguingly, the altered nodal BC of multiple regions (right ORBsupmed, ORBsup and left MTG) within default mode network showed significant correlations with sleep parameters for OSA patients. Our results suggest that children with OSA showed decreased global integration and local specialization in WM networks, typically characterized by DKI tractography and KFA metric. This study may advance our current understanding of the pathophysiological mechanisms of impaired cognition underlying OSA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have