Abstract
Statistical mechanics and transition-state theory have been used to investigate the diffusion kinetics of gold and copper atoms on pristine and various reduced surfaces of rutile TiO2 (110). A DFT+U approach has been employed to calculate potential energy maps and to evaluate the required diffusion activation barriers. The role of the support reducibility has been examined on the adsorption properties (optimal structures, energetics, and spin polarization) and diffusion kinetics, especially for the reduced support presenting a single subsurface oxygen vacancy. This approach has allowed us to demonstrate key discrepancies between Au and Cu atoms and to sketch out a comparative scenario for the early-stage nucleation of Au and Cu nanoparticles on the various surface states of TiO2 (110).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.