Abstract

Multistability is an interesting phenomenon of nonlinear dynamical systems. To gain insights into the effects of noise on multistability, we consider the parameter region of the Lorenz equations that admits two stable fixed point attractors, two unstable periodic solutions, and a metastable chaotic "attractor". Depending on the values of the parameters, we observe and characterize three interesting dynamical behaviors: (i) noise induces oscillatory motions with a well-defined period, a phenomenon similar to stochastic resonance but without a weak periodic forcing; (ii) noise annihilates the two stable fixed point solutions, leaving the originally transient metastable chaos the only observable; and (iii) noise induces hopping between one of the fixed point solutions and the metastable chaos, a three-state intermittency phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.