Abstract

We study the effects of noise on the Lorenz equations in the parameter regime admitting two stable fixed point solutions and a strange attractor. We show that noise annihilates the two stable fixed point attractors and evicts a Hopf-bifurcation-like sequence and transition to chaos. The noise-induced oscillatory motions have very well defined period and amplitude, and this phenomenon is similar to stochastic resonance, but without a weak periodic forcing. When the noise level exceeds certain threshold value but is not too strong, the noise-induced signals enable an objective computation of the largest positive Lyapunov exponent, which characterize the signals to be truly chaotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.