Abstract

To better understand diffusion phenomena in highly nonideal ternary liquid mixtures, cyclohexane–toluene–methanol is studied by equilibrium molecular dynamics (EMD) simulation. Intradiffusion and Maxwell–Stefan (MS) diffusion coefficients, being strictly kinetic properties, are predicted by EMD over the entire composition range at ambient conditions. The thermodynamic contribution to the Fick diffusion coefficients is studied with an excess Gibbs energy model. Predictive results from the combination of these two approaches are in convincing agreement with experimental Fick diffusion coefficient data. Different aspects determining the composition dependence of diffusion coefficients, such as their behavior at the binary limits, hydrogen bonding, and stability criteria, are discussed. While the intradiffusion coefficients exhibit only a weak composition dependence, the MS diffusion coefficients are strongly affected by the nonideality of the present mixture. Fick diffusion coefficients reveal pronounced dif...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.