Abstract

Dynamic light scattering (DLS) experiments and equilibrium molecular dynamics (EMD) simulations were performed in the saturated liquid phase of the binary mixture of 1-hexyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide ([HMIM][NTf2]) and carbon dioxide (CO2) to access the Fick diffusion coefficient (D11). The investigations were performed within or close to saturation conditions at temperatures between (298.15 and 348.15) K and CO2 mole fractions (xCO2) up to 0.81. The DLS experiments were combined with polarization-difference Raman spectroscopy (PDRS) to simultaneously access the composition of the liquid phase. For the first time in an electrolyte-based system, D11 was directly calculated from EMD simulations by accessing the Maxwell-Stefan (MS) diffusion coefficient and the thermodynamic factor. Agreement within combined uncertainties was found between D11 from DLS and EMD simulations for CO2 mole fractions up to 0.5. In general, an increasing D11 with increasing xCO2 could be observed, with a local maximum present at a CO2 mole fraction of about 0.75. The local maximum could be explained by an increasing MS diffusion coefficient with increasing xCO2 over the entire studied composition range and a decreasing thermodynamic factor at xCO2 above 0.7. Finally, PDRS and EMD simulations were combined to investigate the influence of the fluid structure on the diffusive process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.