Abstract

An indigenous Cellulosimicrobium cellulans GS6 isolate able to solubilize insoluble phosphate complexes in soil is a potential bacterial fertilizer. Enclosure of the phosphate-solubilizing bacterium (PSB) in biodegradable capsules may protect the PSB cells inoculated into soil and, in the meantime, enable the control of cell release that confers long-term fertilizing effects. In this study, calcium alginate (CA) was used as the core matrix to encapsulate cells of C. cellulans GS6. The cell-liberating properties of the CA-based capsules were modified by blending with a variety of supplemental materials (SM), including chitin, cellulose, olive oil, and gelatin. The experimental results showed that the maximum cell-release percentage (MCR%) of the capsules decreased in the order of CA-cellulose > CA-olive oil > CA-chitin > CA-gelatin > CA. Furthermore, a mass transport model was developed to accurately describe the kinetics of cell release results for each capsule. The diffusion coefficient ( D e) of each capsule was also determined from the model simulation. We found that the estimated D e values are positively correlated to the release rate with rare exceptions. Lastly, as our results underscored the crucial roles that the type of capsules plays in the rate and amount of cell release, controlled release of the bacterial fertilizer ( C. cellulans GS6 cells) may be achieved via the design of capsule materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.