Abstract
The ability of multivariate analysis methods such as hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis (PLS-DA) to achieve olive oil classification based on the olive fruit varieties from their triacylglycerols profile, have been investigated. The variations in the raw chromatographic data sets of 56 olive oil samples were studied by high-temperature gas chromatography with (ion trap) mass spectrometry detection. The olive oil samples were of four different categories ("extra-virgin olive oil", "virgin olive oil", "olive oil" and "olive-pomace" oil), and for the "extra-virgin" category, six different well-identified olive oil varieties ("hojiblanca", "manzanilla", "picual", "cornicabra", "arbequina" and "frantoio") and some blends of unidentified varieties. Moreover, by pre-processing methods of chemometric (to linearise the response of the variables) such as peak-shifting, baseline (weighted least squares) and mean centering, it was possible to improve the model and grouping between different varieties of olive oils. By using the first three principal components, it was possible to account for 79.50% of the information on the original data. The fitted PLS-DA model succeeded in classifying the samples. Correct classification rates were assessed by cross-validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.