Abstract
In this paper, we define and investigate a system of coupled regular diffusion equations in which each concentration acts as a driving term in the next diffusion equation. Such systems can be understood as a kind of cascade process which appear in different fields of physics like diffusion and reaction processes or turbulence. As a solution, we apply the time-dependent self-similar Ansatz method, the obtained solutions can be expressed as the product of a Gaussian and a Kummer’s function. This model physically means that the first diffusion works as a catalyst in the second diffusion system. The coupling of these diffusion systems is only one way. In the second part of the study we investigate mutually coupled diffusion equations which also have the self-similar trial function. The derived solutions show some similarities to the former one. To make our investigation more complete, different kinds of couplings were examined like the linear, the power-law, and the Lorentzian. Finally, a special coupling was investigated which is capable of describing isomerization with temporal decay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.