Abstract

Approximations are derived for both nonlinear heat equations and singularly perturbed nonlinear wave equations with highly oscillating random force on boundary and strong interaction. By a diffusion approximation method, if the interaction is large and the singular perturbation is small enough, the approximation of the nonlinear wave equation is an one dimensional stochastic ordinary differential equation with white noise from the boundary which is exactly the same as that of the nonlinear heat equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.