Abstract

The production of energy through nuclear fusion poses serious challenges related to the stability and performance of materials in extreme conditions. In particular, the constant bombardment of the walls of the reactor with high doses of He ions is known to lead to deleterous changes in their microstructures. These changes follow from the aggregation of He into bubbles that can grow and blister, potentially leading to the contamination of the plasma, or to the degradation of their mechanical properties. We computationally study the behavior of small clusters of He atoms in W in conditions relevant to fusion energy production. Using a wide range of techniques, we investigate the thermodynamics of the clusters and their kinetics in terms of diffusivity, growth, and breakup, as well as mutation into nano-bubbles. Our study provides the essential ingredients to model the early stages of He exposure leading up to the nucleation of He bubbles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.