Abstract
The NMR-detectability of elements of organic ligands that stabilize colloidal inorganic nanocrystals (NCs) allow the study of their diffusion characteristics in solutions. Nevertheless, these measurements are sensitive to dynamic ligand exchange and often lead to overestimation of diffusion coefficients of dispersed colloids. Here, we present an approach for the quantitative assessment of the diffusion properties of colloidal NCs based on the NMR signals of the elements of their inorganic cores. Benefiting from the robust 19F-NMR signals of the fluorides in the core of colloidal CaF2 and SrF2, we show the immunity of 19F-diffusion NMR to dynamic ligand exchange and, thus, the ability to quantify, with high accuracy, the colloidal diameters of different types of nanofluorides in situ. With the demonstrated ability to characterize the formation of protein corona at the surface of nanofluorides, we envision that this study can be extended to additional formulations and applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.