Abstract
Photoplethysmography (PPG), with its wide range of applications, has become one of the most promising modalities for healthcare monitoring technology. In this work, we present a new PPG measurement technique based on diffuse transmittance spectroscopy (DTS) with the help of a smartphone built-in flashlight as an alternative broadband light source. The blood Volume Pulse (BVP) signal was extracted from recorded transmittance spectra at 620 nm. The results were compared with the ground truth and conventional contact finger PPG sensors. A very high correlation was found between the diffuse transmittance signal and the reference PPG signals (r = 0.997, p < 0.0001). The accuracy and root mean square error (RMSE) were 99.23% and 0.8 bpm, respectively. In addition, a Bland-Altman analysis showed a good agreement between both techniques, with a very small bias between mean paired differences of heart rate observations. A simple forward model for diffuse transmittance spectra for different levels of blood oxygen saturation is developed and supported by experimental measurements. It was also found that blood oxygen saturation (SpO2) can be estimated with the aid of DTS based smartphone flash by tracking the wavelength corresponding to the oxygenation level in the visible range between orange and red regions of the visible spectrum particularly in the range between 610 and 635 nm for 26 healthy subjects. 624 nm on average seems to be the wavelength that corresponds with the normal blood oxygenation level. These findings show the potential of DTS PPG to reliably extract cardiac frequency and estimate SpO2 with adequate accuracy. The results also demonstrate the capability of smartphone flash as a miniature visible light source for recording multispectral PPG signals and quantifying vital signs in the transmission mode at the fingertip with acceptable signal quality over a wide range of wavelengths from 550 nm to 650 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.