Abstract

Objective. Monitoring changes in human heart rate variability (HRV) holds significant importance for protecting life and health. Studies have shown that Imaging Photoplethysmography (IPPG) based on ordinary color cameras can detect the color change of the skin pixel caused by cardiopulmonary system. Most researchers employed deep learning IPPG algorithms to extract the blood volume pulse (BVP) signal, analyzing it predominantly through the heart rate (HR). However, this approach often overlooks the inherent intricate time-frequency domain characteristics in the BVP signal, which cannot be comprehensively deduced solely from HR. The analysis of HRV metrics through the BVP signal is imperative. Approach. In this paper, the transformation invariant loss function with distance equilibrium (TIDLE) loss function is applied to IPPG for the first time, and the details of BVP signal can be recovered better. In detail, TIDLE is tested in four commonly used IPPG deep learning models, which are DeepPhys, EfficientPhys, Physnet and TS_CAN, and compared with other three loss functions, which are mean absolute error (MAE), mean square error (MSE), Neg Pearson Coefficient correlation (NPCC). Main results. The experiments demonstrate that MAE and MSE exhibit suboptimal performance in predicting LF/HF across the four models, achieving the Statistic of Mean Absolute Error (MAES) of 25.94% and 34.05%, respectively. In contrast, NPCC and TIDLE yielded more favorable results at 13.51% and 11.35%, respectively. Taking into consideration the morphological characteristics of the BVP signal, on the two optimal models for predicting HRV metrics, namely DeepPhys and TS_CAN, the Pearson coefficients for the BVP signals predicted by TIDLE in comparison to the gold-standard BVP signals achieved values of 0.627 and 0.605, respectively. In contrast, the results based on NPCC were notably lower, at only 0.545 and 0.533, respectively. Significance. This paper contributes significantly to the effective restoration of the morphology and frequency domain characteristics of the BVP signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.