Abstract

Dielectric relaxation and polar structures of BaTi1−xSnxO3 ceramics, x=0.10–0.20, are investigated by means of dielectric spectroscopy and piezoresponse force microscopy. A transition regime between “normal” ferroelectric and relaxor behaviors is encountered. In the compositions with x=0.10, a complex domain pattern confirming the ferroelectric state is observed. Strong dielectric relaxation around Tm is attributed to domain wall motion. On the other hand, the dielectric spectra in the sample with x=0.20 are very similar to those observed in relaxor ferroelectrics. Analysis of the relaxation spectra at the intermediate concentration, x=0.15, reveals both domain wall response and an additional contribution related to mesoscale polar structures. The appearance of relaxor behavior in BaTi1−xSnxO3 is discussed within the framework of the random field model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.