Abstract

This study was concerned with the mechanics and micromechanisms of diffuse (ultrastructural) damage occurrence in human tibial cortical bone specimens subjected to tension-tension fatigue. A nondestructive technique was developed for damage assessment on the surfaces of intact compact tension specimens using laser scanning confocal microscopy. Results indicated that diffuse damage initiates as a result of fractures in the inter-canalicular regions. Subsequent growth of those microscopic flaws demonstrated multiple deflections from their paths due to 3D spatial distribution of microscopic porosities (lacunae-canalicular porosities) and the stress-concentrating effects of lacunae. Damage dominating effects in the early stages of fatigue had been verified by the observed variations of the fracture toughness due to artificially induced amounts of damage. Toughening behavior was observed as a function of diffuse damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.