Abstract
We show that interactions of fast particles with the boundary shell of the local hot bubble could make an important contribution to the 0.5-1 keV diffuse X-ray background observed with ROSAT. The bulk of these nonthermal X-rays are due to line emission from fast O ions of energies around 1 MeV/nucleon. This is the typical energy per particle in the ejecta of the supernova which is thought to have energized the bubble. We find that there is sufficient total energy in the ejecta to produce X-rays of the required intensity, subject to the details of the evolution of the fast particle population since the supernova explosion (about 3 10$^5$ years ago based on the age of the Geminga pulsar). The unequivocal signature of lines from deexcitations in fast ions is their large width ($\delta E/E$~0.1 for O lines), which will clearly distinguishes them from X-ray lines produced in a hot plasma. If a small fraction of the total ejecta energy is converted into accelerated particle kinetic energy (>~30 MeV/nucleon), the gamma-ray line emission produced in the boundary shell of the local hot bubble could account for the recently reported COMPTEL observations of nuclear gamma-ray lines from a broad region towards the Galactic center.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have