Abstract
In this work, a radio-frequency (RF) atmospheric pressure glow discharge burning in neon between planar metal electrodes is achieved for the first time. The RF discharge can operate in two stable modes: in a diffuse α-mode with uniformly covered electrode surfaces and in a constricted γ-mode. Similarities are revealed when the discharge is compared against the RF atmospheric pressure glow discharge in helium, namely both discharges show a discontinuity and a hysteresis in the current–voltage characteristic at the mode transition; the spatio-temporal profiles of the light emission in the α-mode from neon, helium and atomic oxygen are also similar.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have