Abstract

The term Microsensor is typically used to mean a sensing device that is fabricated using microelectronic technology. The field of Microsensors has a fifty-year history starting with several key developments in the 1950’s:  The invention of integrated circuits.  The discovery of piezoresistance in silicon.  The discovery of selective etching of single-crystal silicon.  The development of thin-film read heads for magnetic recording. During the last twenty years, emphasis in this field has gradually shifted from basic research on materials and process technologies toward product development. Each year new products appear, and with these, an expansion of potential future opportunities. Microsensors have a bright future, both in the commodity arena and in the MEMS-enabled arena. The physical sensors, pressure, acceleration, rotation, and acoustic (microphones) continue to find new commodity-level markets. Sensors, whether commodity sensors such as the cell-phone microphone, or system sensors, are becoming smarter, more capable, and are finding new markets every day. In the present review we describe a wide class of microsensors based on diffractive optics element (DOE). Diffractive optics is very versatile since any type of wave can be considered for computation within the computer. Digital holograms created with such technology are more commonly called DOE. Another name for DOE is computer-generated hologram (CGH). Because of these equivalent terminologies, the word DOE will be used in this chapter. For their operation the diffractive elements depend on diffraction effects: DOEs are based on the effect of radiation diffraction on a periodic or quasiperiodic structure rather than on refraction as it is in the classical optics. The optical depth of a focusing element ranges within a radiation wavelength. In this respect, the zone plates (FZP) like lens may be referred to diffraction elements, i.e., to a class of quasioptical focusing systems, since according to the definition of quasioptics they are calculated, as a rule, by laws of geometrical optics, and the principle of their operation is based on diffraction effects. There basic types of DQE are distinguished (according to the principle of their location relative to the direction of electromagnetic wave propagation) [1], they are: a transverse element (implemented primarily on a plane surface), a longitudinal-transverse element (on an arbitrary curved surface), and a longitudinal element (representing a set of screens situated along the direction of electromagnetic wave propagation). DQE can operate by the principle of “transmission” or “reflection”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call