Abstract

ABSTRACTIn this paper, we present guidelines for the design of backside gratings for crystalline silicon solar cells. We use a specially developed method based on a combination of rigorous 3D wave optical simulations and detailed semiconductor device modeling. We also present experimental results of fabricated structures. Simulation‐based optimizations of grating period Λ and depth d of a binary grating and calculations of the optical and electrical characteristics of solar cells with optimized gratings are shown. The investigated solar cell setup features a thickness of dbulk = 40 µm and a flat front surface. For this setup, we show a maximum increase in short‐circuit current density of ΔjSC = 1.8 mA/cm² corresponding to an efficiency enhancement of 1% absolute. Furthermore, we investigate different loss mechanisms: (i) an increased rear surface recombination velocity S0,b because of an altered surface caused by the introduction of the grating and (ii) absorption in the aluminum backside reflector. We analyze the trade‐off point between gain due to improved optical properties and loss due to corrupted electrical properties. We find that, increasing the efficiency by 1% absolute due to improved light trapping, the maximum tolerable recombination velocity is S0,b(max) = 5.2 × 103 cm/s. From simulations and measurements, we conclude that structuring of the aluminum backside reflector should be avoided because of parasitic absorption. Adding a dielectric buffer layer between silicon and the structured aluminum, absorption losses can be tuned. We find that for a planar reflector, the thickness of a SiO2 buffer layer should exceed = 120 nm. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.