Abstract

The observation of the detailed atomic arrangement within nanostructures has previously required the use of an electron microscope for imaging. The development of diffractive (lensless) imaging in X-ray science and electron microscopy using ab initio phase retrieval provides a promising tool for nanostructural characterization. We show that it is possible experimentally to reconstruct the atomic-resolution complex image (exit-face wavefunction) of a small particle lying on a thin carbon substrate from its electron microdiffraction pattern alone. We use a modified iterative charge-flipping algorithm and an estimate of the complex substrate image is subtracted at each iteration. The diffraction pattern is recorded using a parallel beam with a diameter of approximately 50 nm, illuminating a gold nanoparticle of approximately 13.6 nm diameter. Prior knowledge of the boundary of the object is not required. The method has the advantage that the reconstructed exit-face wavefunction is free of the aberrations of the objective lens normally used in the microscope, whereas resolution is limited only by thermal vibration and noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.