Abstract

The drastic evolution of molecular systems exposed to ultrashort intense X-ray pulse is a fundamental obstacle for single-particle imaging (SPI) by means of X-ray free electron lasers (XFEL). Here we tackle the simplest molecule H2+ and its diffraction pattern degradations in the strong ultrashort X-ray beam. The semiclassical method of the problem solution and its advantages are described in detail. We apply the method to calculate the electron density autocorrelation functions (ACF) for a few internuclear distances and then discuss numeric simulation data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.