Abstract
In the problem of the diffraction of light by two parallel supersonic waves, consisting of a fundamental tone and itsn-th harmonic, the solution of the system of difference-differential equations for the amplitudes has been reduced to the integration of a partial differential equation. The expressions for the amplitudes of the diffracted light waves are obtained as the coefficients of the Laurent expansion of the solution of this partial differential equation. The latter has been integrated for two approximations: (1) Forρ = 0, the results of Murty’s elementary theory are reestablished. (2) Forρ ≤ 1, a power series inρ, the terms of which are calculated as far as the third one, leads to a new expression for the intensities of the diffracted light waves, verifying the general symmetry properties obtained by Mertens.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have