Abstract

We show that an appropriate mass-loading, placed on the surface and in between the electrodes of a coplanar acoustic LiNbO3 superlattice, can counteract lateral diffraction of surface acoustic waves (SAWs). The strong confinement corresponds to a SAW mode, whose displacement is measured using laser interferometry. The proposed SAW confinement method has also potentials in acousto-optic devices, as we demonstrate a threefold reduction in the electrical power required for complete optical switching in mass-loaded superlattice with respect to similar unloaded structure. The devices have also the advantage not to suffer additional acoustic or optical loss due to the mass-loading structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.