Abstract

Focused femtosecond beam filamentation after amplitude masks has been studied experimentally and numerically. We deduced conditions (energy per hole, diameter and geometrical composition of holes, focal length) providing for the formation of the regularized bundle of filaments or single on-axis filament at the given pulse duration and beam diameter. We showed that a light channel with small diameter (∼200 μm) and overcritical peak power may be formed well before both the focal distance and the Marburger length, and this channel collapses due to self-focusing and forms the filament. The start position of such a filament can be predicted based on the linear propagation equation, while a more sophisticated non-linear approach that takes into account the Kerr nonlinearity, plasma effects, etc., helps to describe the temporal structure of a filament, its frequency, and its angular spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call