Abstract

Diffraction gratings were discovered during the 18th century, and they are now widely used in spectrometry analysis, with outstanding achievements spanning from the probing of single molecules in biological samples to the analysis of solar systems in astronomy. The fabrication of high-quality diffraction gratings requires precise control of the period at a nanometer scale. The discovery of lasers in the 1960s gave birth to optical beam lithography in the 1970s. This technology revolutionized the fabrication of diffraction gratings by offering highly precise control of the grating period over very large scales. It is surprising to see that a few years after, the unique spectral properties of diffraction gratings revolutionized, in turn, the field of high-energy lasers. We review in this paper the physics of diffraction gratings and detail the interest in them for pulse compression of high-power laser systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call