Abstract

ObjectivesHearing loss (HL) is associated with imbalance and increased fall risk. The mechanism underlying this relationship and differences across types of hearing loss remains unclear. Head mounted displays (HMD) can shed light on postural control mechanisms via an analysis of head sway. PurposeThe purpose of this study was to evaluate head sway in response to sensory perturbations in individuals with bilateral (BHL) or unilateral hearing loss (UHL) and compare them to controls. Materials and methodsWe recruited 36 controls, 23 individuals with UHL and 14 with BHL. An HMD (HTC Vive) measured head sway while participants stood on the floor, hips-width apart. Stimuli included two levels of visuals and sound. Root Mean Square Velocity (RMSV) and Power Spectral Density (PSD) were used to quantify head sway. ResultsAdjusting for age, individuals with BHL had significantly higher anterior-posterior and medio-lateral RMSV than controls and individuals with UHL. Individuals with UHL demonstrated significantly lower response to visual perturbations in RMSV AP and in all 3 frequency segments of PSD compared to controls. Individuals with UHL showed significantly lower movements at high frequencies compared to controls. Sounds or severity of HL did not impact head sway. ConclusionsIndividuals with BHL demonstrated increased sway with visual perturbations and should be clinically assessed for balance performance and fall risk. Individuals with UHL exhibited reduced responses to visual stimuli compared with controls, which may reflect conscious movement processing. Additional studies are needed to further understand the mechanistic relationship between hearing loss and imbalance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call