Abstract

The chloroplasts of individual cells of Mesotaenium caldariorum were examined microphotometrically under non-polarized and polarized measuring light. The measurement with non-polarized light showed different absorption bands of the thylakoids depending on the position of their surface with respect to the incident light beam: in the edge position, the absorption bands lie at 672 nm, in the face position at 678 nm. From this difference in absorption maxima, we conclude that the molecules related to the sub-bands at the two wavelengths are oriented differently. The Q y transition of the molecules which absorb light at 678 nm must be oriented parallel to the face of the thylakoids (fraction I), while that of the molecules absorbing at 672 nm is oriented perpendicular to the face (fraction II). Measurement with polarized light leads to the same conclusion that two fractions of differently oriented chlorophylls exist: In the edge position, a very large difference between E ∥ and E ⊥ (dichroism) was found in red light, with a maximum of E ∥ lying at 675 nm and a maximum of E ⊥ at 670 nm, with a shoulder at 650 nm. In the blue region, especially in the Soret band zone, the chloroplast showed a negative dichroism in the edge position, which changes over to positive values when the wavelength exceeds 450 nm. In the face position no dichroism in red or blue light could be detected. Comparison of the ‘edge position dichroism’ in red light with that in blue light justifies the supposition that the chlorin planes of the chlorophyll molecules may be oriented perpendicular or parallel to the thylakoid face, in the case of perpendicular orientation with the Q y transitions of fraction II and the x-transitions ( B x , Q x ) of fraction I projecting out of the plane, and for parallel orientation with all transition moments lying parallel to the plane (fraction I). The relative dichroism, (E ∥ − E ⊥) (E ∥ + E ⊥) , measured at the edge position amounts to 0.34 (i.e., 34% of the total absorption) at 680 nm. These data probably do not reflect the total quantity of oriented chlorophyll because from the opposite orientations of the Q y transition moments of fraction I and II pigment a partial quenching of the measurable dichroism results. The red light absorption bands of the two chlorophylls oriented in an opposite manner (fractions I and II) correspond to the known bands of Photosystem I and II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.