Abstract

In the past decades, scientists have made outstanding efforts to treat diabetes. However, diabetes treatment is still far from satisfactory due to the complex nature of the disease and the challenges encountered in resolving it. Inflammatory factors are key regulators of the immune system's response to pathological insults, organ neogenesis, rejuvenation of novel cells to replace injured cells and overwhelming disease conditions. Currently, the available treatments for type 1 diabetes include daily insulin injection, pancreatic beta cell or tissue transplantation, and gene therapy. Cell therapy, exploiting differentiation, and reprogramming various types of cells to generate pancreatic insulin-producing cells are novel approaches for the treatment of type 1 diabetes. A better understanding of the inflammatory pathways offers valuable and improved therapeutic options to provide more advanced and better treatments for diabetes. In this review, we investigated different types of inflammatory factors that participate in the pathogenesis of type 1 diabetes, their possible dual impacts on the differentiation, reprogramming, and fusion of other stem cell lines into pancreatic insulin-producing beta cells, and the possibility of applying these factors to improve the treatment of this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.