Abstract

Mouse embryonic stem cells (mES cells), which are pluripotent and self-renewal cells, are derived from the inner cell mass of mouse blastocysts. The objective of this study was to construct more efficient mES cell-derived embryoid bodies (EBs) for use as a vasculogenesis model and as an in vitro vascular toxicity testing model. EBs were formed for 3 days using hanging drop cultures and plated on gelatin-coated plates in endothelial growth medium-2 (EGM-2) to promote vascular development. The differentiation of mES cell-derived EBs was confirmed by reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, and flow cytometry within 7 days after plating EBs. The mRNA and protein expressions of vascular endothelial growth factor receptors-2 (FLK-1), platelet endothelial cell adhesion molecule (PECAM), and vascular endothelial-cadherin (VE-cadherin) were observed in differentiated mES cells. When placed in matrigel, mES cell-derived endothelial like cells formed networks similar to vascular structures. mES cells were also exposed to 5-fluorouracil (5-FU), a strong inhibitor of vessel formation, and its cytotoxicity was determined using MTT assays. The inhibitory concentrations (IC 50) of 5-FU for mES cells and C166 cells were 0.72 μM and 1.04 μM, respectively. These results demonstrate that mES cells can be used to study vasculogenesis and for cytotoxicity screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.