Abstract

The challenge of glycan identification due to their structural complexity and diversity has profited enormously from recent developments in mass spectrometry (MS)-related methods. For photodissociation MS, infrared (IR) and ultraviolet (UV) lasers can generate complementary fragment ions, so an effective combination of the two methods may provide rich and valuable fragmentation patterns for glycan analysis. A 7.0T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer equipped with a double-beam laser system was applied for the experiments. 3,5-Diiodo-L-tyrosine was selected as the assistant molecule to form complex ions with ten isomeric disaccharides through electrospray ionization. The complex ions were further isolated and irradiated by IR and UV lasers separately or continuously in the FTICR cell. By combining the two complementary fragment spectra generated from the IR and UV lasers, a clear identification of all the ten isomers was achieved using their binary codes based on their fragmentation patterns. The double-beam method simplifies the experiment by introducing the two lasers sequentially in one experiment, providing richer fragmentation patterns and making the full discrimination easier. This study demonstrates the capabilities of the combination of IR and UV photodissociation MS in the identification of diverse glycan isomers. The double-beam photodissociation method described here distinguished compositional, configurational and connectivity disaccharide isomers successfully. Compared with the data accumulation method based on separate IR and UV experiments, this method is simpler, faster, more flexible and also characterized by richer fragmentation patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call