Abstract

Calcium carbonate has evoked interest owing to its use as a biomaterial, and for its potential in biomineralization. Three polymorphs of calcium carbonate, i.e. calcite, aragonite, and vaterite were synthesized. Three conventional bulk analysis techniques, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and SEM, were used to confirm the crystal phase of each polymorphic calcium carbonate. Two surface analysis techniques, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS), were used to differentiate the surfaces of these three polymorphs of calcium carbonate. XPS results clearly demonstrate that the surfaces of these three polymorphs are different as seen in the Ca(2p) and O(1s) core-level spectra. The different atomic arrangement in the crystal lattice, which provides for a different chemical environment, can explain this surface difference. Principal component analysis (PCA) was used to analyze the TOF-SIMS data. Three polymorphs of calcium carbonate cluster into three different groups by PCA scores. This suggests that surface analysis techniques are as powerful as conventional bulk analysis to discriminate calcium carbonate polymorphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call