Abstract

The task of designing the geometry of a set of current-carrying coils that produce the magnetic field required to confine a given plasma equilibrium in stellarators is expressed as a minimization principle, namely that the coils minimize a suitably defined error expressed as a surface integral, which is recognized as the quadratic-flux. A penalty on the coil length is included to avoid pathological solutions. A simple expression for how the quadratic-flux and coil length vary as the coil geometry varies is derived, and an expression describing how this varies with variations in the surface geometry is derived. These expressions allow efficient coil-design algorithms to be implemented, and also enable efficient algorithms for varying the shape of the plasma surface in order to simplify the coil geometry, and a numerical illustration of this is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.