Abstract
Cerebral radiation necrosis (RN) is often a delayed phenomenon occurring several months to years after the completion of radiation treatment. Differentiating RN from tumor recurrence presents a diagnostic challenge on standard MRI. To date, no evidence-based guidelines exist regarding imaging modalities best suited for this purpose. We aim to review the current literature and perform a diagnostic meta-analysis comparing various imaging modalities that have been studied to differentiate tumor recurrence and RN. A systematic search adherent to PRISMA guidelines was performed using Scopus, PubMed/MEDLINE, and Embase. Pooled sensitivities and specificities were determined using a random-effects or fixed-effects proportional meta-analysis based on heterogeneity. Using diagnostic odds ratios, a diagnostic frequentist random-effects network meta-analysis was performed, and studies were ranked using P-score hierarchical ranking. The analysis included 127 studies with a total of 220 imaging datasets, including the following imaging modalities: MRI (n = 10), MR Spectroscopy (MRS) (n = 28), dynamic contrast-enhanced MRI (n = 7), dynamic susceptibility contrast MRI (n = 36), MR arterial spin labeling (n = 5), diffusion-weighted imaging (n = 13), diffusion tensor imaging (DTI) (n = 2), PET (n = 89), and single photon emission computed tomography (SPECT) (n = 30). MRS had the highest pooled sensitivity (90.7%). DTI had the highest pooled specificity (90.5%). Our hierarchical ranking ranked SPECT and MRS as most preferable, and MRI was ranked as least preferable. These findings suggest SPECT and MRS carry greater utility than standard MRI in distinguishing RN from tumor recurrence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have