Abstract
BackgroundThe diagnosis of multiple sclerosis (MS) relies heavily on neuroimaging with magnetic resonance imaging (MRI) and exclusion of mimics. This can be a challenging task due to radiological overlap in several disorders and may require ancillary testing or longitudinal follow up. One of the most common radiological MS mimickers is non-specific white matter disease (NSWMD). We aimed to develop and evaluate models leveraging machine learning algorithms to help distinguish MS and NSWMD. MethodsAll adult patients who underwent MRI brain using a demyelinating protocol with available electronic medical records between 2015 and 2019 at Cleveland Clinic affiliated facilities were included. Diagnosis of MS and NSWMD were assessed from clinical documentation. Those with a diagnosis of MS and NSWMD were matched using total T2 lesion volume (T2LV) and used to train models with logistic regression and convolutional neural networks (CNN). Performance metrices were reported for each model. ResultsA total of 250 NSWMD MRI scans were identified, and 250 unique MS MRI scans were matched on T2LV. Cross validated logistic regression model was able to use 20 variables (including spinal cord area, regional volumes, and fractions) to predict MS compared to NSWMD with 68.0% accuracy while the CNN model was able to classify MS compared to NSWMD in two independent validation and testing cohorts with 77% and 78% accuracy on average. ConclusionAutomated methods can be used to differentiate MS compared to NSWMD. These methods can be used to supplement currently available diagnostic tools for patients being evaluated for MS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have