Abstract
This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA)for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models. By drawing on these insights and addressing the challenges posed by small, single-institutional datasets, the paper aims to demonstrate how AI applications can improve diagnostic precision, enhance clinical decision-making, and ultimately lead to better patient outcomes in managing sellar region cystic lesions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have