Abstract

Abstract Chalk porosity plays a decisive role in the transport of solutes and heat in saturated chalk. From a geological point of view, there are at least two types of porosity: the porosity of pores corresponding to the micro-spaces between the fossil coccoliths that form the chalk matrix and the porosity owing to the micro- and macro-fractures (i.e. secondary porosity). For groundwater flow, the fracture porosity is a determining factor at the macroscopic scale. The multiscale heterogeneity of the porous/fractured chalk induces different effects on solute and heat transport. For solute transport considered at the macroscopic scale, tracer tests have shown that the ‘effective transport porosity’ is substantially lower than the ‘effective drainable porosity’. Moreover, breakthrough curves of tracer tests show an important influence of diffusion in a large portion of the ‘immobile water’ (‘matrix diffusion’) together with rapid preferential advection through the fractures. For heat transport, the matrix diffusion in the ‘immobile water’ of the chalk is hard to distinguish from conduction within the saturated chalk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call