Abstract
Matrix-diffusion parameters deduced from an infiltration tracer test at Idaho National Laboratory (INL), USA, are combined with other site information in an analysis involving two dimensionless lumped parameters to assess the effects of matrix diffusion on contaminant transport at the INL over longer distance and time scales than were evaluated in the test. Matrix diffusion was interrogated in the test by comparing, in three different observation wells, the breakthrough curves of two simultaneously injected nonsorbing solutes that have different diffusion coefficients. The matrix-diffusion parameters deduced from the different breakthrough curves were in good agreement, suggesting that the parameters may be broadly applicable at the INL. With this in mind, the uncertainties in the individual parameters that make up the two lumped parameters were estimated, and the resulting ranges of parameter values were used to assess matrix diffusion over larger scales. Assessments of the effects of flow transients, spatial heterogeneity in transport parameters, and sorption on solute transport in the shallow subsurface flow system were also conducted. The methods presented here should be generally applicable to other settings for making bounding assessments of the effects of matrix diffusion while honoring the information obtained from tracer tests and other supporting data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.