Abstract

BackgroundX-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome, the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates, triggering silencing of the chromosome. In mouse, an alternative Xist promoter, P2 is also the site of YY1 binding, which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation, including absence of a functional antisense regulator Tsix, and absence of strictly paternal inactivation in extraembryonic tissues, prompting us to examine regulatory regions for the human XIST gene.ResultsWe demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However, YY1 binding is insufficient to drive P2 expression or establish the DHS, which may require a development-specific factor. Furthermore, reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST.ConclusionsThe differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter, P2, that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition, this region binds YY1 on the unmethylated inactive X chromosome, and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST.

Highlights

  • X-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males

  • The strongest DNase I hypersensitivity (DHS) sites within the XIC are located within the XIST CpG island, ~1.4 kb downstream of the XIST promoter, and are female-specific

  • We carried out a DNase I hypersensitivity assay at two regions, DHS 200b.1, which lies within the CpG island, and DHS 200a.1 which lies 518 bp downstream of the CpG island (Figure 1A)

Read more

Summary

Introduction

X-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. XCI is controlled by an alternatively spliced, long non-coding RNA called XIST/Xist [2,3] that is up-regulated at the onset of XCI and is necessary for silencing [4,5,6]. A region homologous to P2, in combination with P1, showed higher expression of a reporter gene relative to clones containing P1 alone, providing indirect evidence for conservation of P2 activity [11]. In both mice and humans this region is contained within a CpG island that becomes methylated on the Xa to maintain XIST repression [12]. The transcription factor YY1 has recently been shown to be central to the cis specificity of Xist by tethering Xist RNA to the Xist genomic locus at binding sites located within the Xist CpG island [15]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.