Abstract

During embryogenesis, the XIST RNA is expressed from and localizes to one X chromosome in females and induces chromosome-wide silencing. Although many changes to inactive X heterochromatin are known, the functional relationships between different modifications are not well understood, and studies of the initiation of X-inactivation have been largely confined to mouse. We now present a model system for human XIST RNA function in which induction of an XIST cDNA in somatic cells results in localized XIST RNA and transcriptional silencing. Chromatin immunoprecipitation and immunohistochemistry shows that this silencing need only be accompanied by a subset of heterochromatic marks and that these can differ between integration sites. Surprisingly, silencing is XIST-dependent, remaining reversible over extended periods. Deletion analysis demonstrates that the first exon of human XIST is sufficient for both transcript localization and the induction of silencing and that, unlike the situation in mice, the conserved repeat region is essential for both functions. In addition to providing mechanistic insights into chromosome regulation and formation of facultative heterochromatin, this work provides a tractable model system for the study of chromosome silencing and suggests key differences from mouse embryonic X-inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.