Abstract
Background and aimsIn-stent restenosis (ISR) remains the most daunting challenge of current treatments of coronary artery disease (CAD). MicroRNAs (miRNAs) are prominent regulators of key pathological processes leading to restenosis and used as diagnostic tools in different studies. miR-152 and miR-148a are implicated to contribute in the putative intracellular mechanisms of ISR. The aim of present study is to investigate the potential early-stage diagnostic role of miR-152 and miR-148a expression levels for ISR in peripheral blood mononuclear cells (PBMCs) of patients who underwent stent implantation. Methods and resultsThe miRNAs that are supposed to be involved in the ISR were nominated by bioinformatics approach mainly using miRWalk3. Then by quantitative real-time PCR, we determined the relative expression of miR-152 and miR-148a of PBMCs from ISR patients with their age/sex-matched controls. ResultsThe presence of ISR significantly coincided with a decrease in the relative expression of miR-152. The area under the curve (AUC) for miR-152 receiver operating characteristic (ROC) curve was 0.717 (95% CI; 0.60–0.83) with a sensitivity of 70% and a specificity of 67%, suggesting that the miRNA expression level might be employed to identify patients at risk of ISR. ConclusionsTo the best of our knowledge, this is the first work to show that the miR-152 expression level can possibly be applied to predict CAD patients at risk of ISR. The results suggest that the expression levels of miR-152 in PBMCs may serve as a biomarker for ISR. Our finding suggests the importance of miRNA levels in PBMCs as a novel biological tool to detect diseases in their early clinical stages.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have