Abstract

In this paper we study a dynamical system which consists of the Cauchy problem for a nonlinear evolution equation of first order coupled with a nonlinear time-dependent variational–hemivariational inequality with constraint in Banach spaces. The evolution equation is considered in the framework of evolution triple of spaces, and the inequality which involves both the convex and nonconvex potentials. We prove existence of solution by the Kakutani–Ky Fan fixed point theorem combined with the Minty formulation and the theory of hemivariational inequalities. We illustrate our findings by examining a nonlinear quasistatic elastic frictional contact problem for which we provide a result on existence of weak solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.