Abstract

In this paper we present a model of dynamic frictional contact between a thermoviscoelastic body and a foundation. The thermoviscoelastic constitutive law includes a temperature effect described by the parabolic equation with the subdifferential boundary condition and a damage effect described by the parabolic inclusion with the homogeneous Neumann boundary condition. Contact is modeled with bilateral condition and is associated to a subdifferential frictional law. The variational formulation of the problem leads to a system of hyperbolic hemivariational inequality for the displacement, parabolic hemivariational inequality for the temperature and parabolic variational inequality for the damage. The existence of a unique weak solution is proved by using recent results from the theory of hemivariational inequalities, variational inequalities, and a fixed point argument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.