Abstract
Differential thermal analysis (DTA) has great potential as a quick and convenient cold hardiness determination method in plants. It measures freezing events inside of plant samples by detecting exotherm(s) produced when water changes from liquid to solid phase. DTA is highly sensitive to the experimental conditions and it has been reported to be ineffective among different fruit crops after acclimation of floral buds has occurred. The objective of this project was to establish DTA as a rapid and accurate method to predict peach floral bud cold hardiness from acclimation to deacclimation as compared with the traditional standard artificial freezing test. Floral buds of ‘Elberta’ and ‘Flavorich’ peach cultivars were subjected to DTA and artificial freezing tests throughout the winters of 2015–16 and 2016–17. Before deacclimation, two distinct exotherms, low-temperature exotherms (LTE) and high-temperature exotherms (HTE), were normally detected from floral bud DTA analyses. After deacclimation, DTA tests yielded only a few LTEs. However, incubation of floral buds at −2 °C overnight before the cooling process of DTA tests yielded an increased number of LTEs for both seasons in comparison with samples directly run using DTA without incubation. Similarly, after deacclimation started, the temperature in which LTE occurred was correlated (r = 0.59–0.86) with LT50 (lethal temperature that damaged 50% of floral buds) when DTA samples were treated overnight at −2 °C. In our study, pretreatment of floral buds at −2 °C overcame the inability of DTA to detect LTEs after deacclimation, which improved the ability and reliability of DTA to detect LTEs for more than 50% of the buds used per date per cultivar. DTA is a promising method to predict cold hardiness of peach plants.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have