Abstract
Cell therapy with bone marrow multipotential stromal cells (MSCs) represents a promising approach to promote wound healing and tissue regeneration. MSCs expanded in vitro lose early progenitors with differentiation and therapeutic potentials under normoxic condition, whereas hypoxic condition promotes MSC self-renewal through preserving colony forming early progenitors and maintaining undifferentiated phenotypes. Hypoxia inducible factor (HIF) pathway is a crucial signaling pathway activated in hypoxic condition. We evaluated the roles of HIFs in MSC differentiation, colony formation, and paracrine activity under hypoxic condition. Hypoxic condition reversibly decreased osteogenic and adipogenic differentiation. Decrease of osteogenic differentiation depended on HIF pathway; whereas decrease of adipogenic differentiation depended on the activation of unfolded protein response (UPR), but not HIFs. Hypoxia-mediated increase of MSC colony formation was not HIF-dependent also. Hypoxic exposure increased secretion of VEGF, HGF, and basic FGF in a HIF-dependent manner. These findings suggest that HIF has a limited, but pivotal role in enhancing MSC self-renewal and growth factor secretions under hypoxic condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.