Abstract

Changes in precipitation patterns can significantly affect belowground processes. Although soil extracellular enzymes play a vital role in several biogeochemical processes, our knowledge of how precipitation changes affect soil extracellular enzyme activity (EEA) and stoichiometry remains insufficient. In this study, we investigated the activities of C-acquiring enzyme (β-1,4-glucosidase), N-acquiring enzymes (β-N-acetylglucosaminidase and leucine aminopeptidase), and P-acquiring enzyme (acid phosphatase) under different precipitation scenarios [ambient precipitation (CK), 30% decrease in precipitation (moderate DPT), 50% decrease in precipitation (extreme DPT), 30% increase in precipitation (moderate IPT), and 50% increase in precipitation (extreme IPT)] in a poplar plantation. We found soil EEA exhibited more pronounced increases to moderate IPT compared to moderate DPT (positive asymmetry), the opposite trend (negative asymmetry) was observed under extreme precipitation; whereas soil EEA C:N:P stoichiometry exhibited negative asymmetry at moderate precipitation changes, and exhibited positive asymmetry at extreme precipitation changes. Under moderate precipitation changes, the asymmetry of soil EEA was mainly regulated by asymmetries of respective microbial biomass and litter mass; the asymmetry of soil EEA stoichiometry was mainly regulated by asymmetries of respective soil stoichiometric ratios and litter mass. Furthermore, under extreme precipitation changes, the asymmetries of soil EEA and stoichiometry were best explained by the asymmetry of soil moisture. Our results provide the first evidence of double asymmetric responses of soil EEA and stoichiometry to precipitation changes and highlight the need to consider this asymmetry when modeling the dynamics of biogeochemical cycling in forest ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call