Abstract

The long-terms effects of different crystal-composition TiO2 nanoparticles (NPs) on nitrogen-cycle-related functional guilds in activated sludge remain unclear, especially under natural light irradiation. Accordingly, activated sludge was exposed to anatase TiO2-NPs (TiO2-A) and rutile TiO2-NPs (TiO2-R) for up to 45 days. With markedly (p < 0.05) reducing nitrification-/denitrification-enzymatic-activities and abundances of ammonia-oxidizing-microorganisms (AOMs) and nitrite-reducing-bacteria (NRB), TiO2-NPs triggered bacteria and archaea UPGMA clustering and a deep modification of N-cycling functional diversity guided by crystal structure. in situ13C-DNA-SIP confirmed ammonia-oxidizing-bacteria (AOB) (Nitrosomonas and Nitrosospira) in original sludge as main active AOMs with 75.4 times more abundance than ammonia-oxidizing-archaea (AOA), while AOA within Nitrosopumilus and Nitrososphaera genera were the main active AOMs and tended to aggregate inside sludge after 10-mg/L TiO2-NPs exposure. Encoding-nirK NRB were more sensitive, while encoding-nirS Zoogloea with a total share of 4.97% to 14.93%, etc. were the main active NRB. AOB was more sensitive to TiO2-A, while TiO2-R showed the stronger toxicity to AOA and NRB resulting from differences in water environmental behaviors and crystal characteristics of two TiO2-NPs. This work expands understanding of the ecological risks of titanium-dioxide-crystal-NPs in aquatic environment and may help devise better methods to alleviate environmental stress caused by NPs at wastewater treatment plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.