Abstract

TRH neurons of the hypothalamic paraventricular nucleus (PVN), regulate pituitary–thyroid axis (HPT). Fasting activates expression of orexigenic peptides from the arcuate nucleus, increases corticosterone while reduces leptin, and pro-TRH mRNA levels despite low serum thyroid hormone concentration (tertiary hypothyroidism). TRH synthesis is positively regulated by anorexigenic peptides whose expression is reduced in fasting. The model of dehydration-induced anorexia (DIA) leads to decreased voluntary food intake but peptide expression in the arcuate is similar to forced-food restriction (FFR), where animals remain hungered. We compared the response of HPT axis of female Wistar rats submitted to DIA (2.5% saline solution, food ad libitum, 7 days) with FFR (provided with the amount of food ingested by DIA) and naïve (N) group fed ad libitum, as well as their response to acute cold exposure. Pro-TRH and pro-CRH mRNA levels in the PVN were measured by RT-PCR, TRH content, serum concentration of TSH and thyroid hormones by radioimmunoassay. DIA rats reduced 80% their food consumption compared to N, decreased PVN pro-CRH expression, serum estradiol and leptin levels, increased corticosterone similar to FFR. HPT axis of DIA animals failed to adapt: FFR presented tertiary hypothyroidism and DIA, primary. Response to cold stimulation leading to increased pro-TRH mRNA levels and TRH release was preserved under reduced energy availability in FFR rats but not in DIA, although the dynamics of hormonal release differed: TSH release augmented only in naïve; thyroxine in all but highest in DIA, and triiodothyronine in FFR and DIA suggesting a differential regulation of deiodinases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.