Abstract

The effect of gold thioglucose (GTG) administration on neurons containing feeding-related peptides in the hypothalamic arcuate nucleus was examined in mice. Intraperitoneal GTG injection increased the body weight and produced a hypothalamic lesion that extended from the ventral part of the ventromedial nucleus to the dorsal part of the arcuate nucleus. Neurons containing proopiomelanocortin (POMC) and neuropeptide Y (NPY) present in the dorsal part of the arcuate nucleus were destroyed by GTG. In addition, the peptide-containing fibers that extended from the remaining arcuate neurons were degenerated at the lesion site. The number of POMC-containing fibers in the paraventricular nucleus, dorsomedial nucleus, and lateral hypothalamus was found to have decreased significantly when examined at 2 days and 2 weeks after the GTG treatment. In contrast, the number of NPY-containing fibers in the lateral hypothalamus remained unchanged after the GTG treatment, probably because of the presence of an unaffected NPY-containing fiber pathway passing through the tuberal region and projecting onto the lateral hypothalamus. The number of NPY-immunoreactive fibers in the paraventricular and dorsomedial nuclei showed a moderate but significant decrease at 2 days after the GTG treatment, but it recovered to the normal levels 2 weeks later. The NPY-containing fibers were found to have regenerated across the lesion site 2 weeks later, and this might contribute to the recovery of the NPY-immunoreactive fibers in these regions. The present results first demonstrate that POMC- and NPY-containing neurons in the arcuate nucleus respond differently to the lesion produced by the GTG treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.