Abstract

Mammalian studies have implicated important roles for the basic helix–loop–helix transcription factor Ptf1a-p48 in the development of both exocrine and endocrine pancreas. We have cloned the Ptf1a-p48 ortholog in Danio rerio. Early zebrafish ptf1a expression is observed in developing hindbrain and in endodermal pancreatic precursors. Analysis of ptf1a and insulin expression reveals a population of exocrine precursors that, throughout early development, are temporally and spatially segregated from endocrine elements. Morpholino-mediated knockdown of ptf1a confirms early divergence of these endocrine and exocrine lineages. Ptf1a morphants lack differentiated exocrine pancreas, but maintain normal differentiation and organization of the principal islet. In addition to the exocrine phenotype, ptf1a knockdown also reduces the prevalence of a small population of anterior endocrine cells normally found outside the principal islet. Together, these findings suggest the presence of distinct ptf1a-dependent and ptf1a-independent precursor populations in developing zebrafish pancreas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.